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ABSTRACT

~ ~ ll -kno ’.~:n resul t  of S. N. Bernstein states that a Chebyshev

quadratur e  formula of the form

1 nf f(x)dx = ~~
- 

~ 
f(t~ ) + R (f) , t k rea l

-l
can have algeb raic degree of exactness p = n only if 1 < n < 7  or

n = 9 . The nodes tk are necessarily symmetric with respect to the

origin , so that in fact p = 2 fn /2 J + 1 . If  symmetry of the nodes is im-

posed , It is known from work of Gautschi and Yanagiwara and others that

ne xt- to-highest  algebraic degree p = 2[n/2 ] - 1, beyond the classical

cases above, can be attained only when n 8, 10, 11, and 13. For

these value s of n , “ optimal ’ formulas have been obtained which mini-

p-f lmize R n (X ) among all symmetric Chebyshev quadrature s of degree

p = 2[n/fl - I . We show here that these same formulas in fact minimize

for each I > p + 1
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ON OPTIMAL CHEBYSHEV -TYPE QUA DRATURES

Wdlter Ga utschi and Giovanni Monegato

1. Int roduct ion.  We consider symmetric Chebyshev-type quadrature

for mulas  of next - to-h ighes t  algebraic degree of exactness , i .e. , eq ually

weighted quadrature  formulas of the form

(1. 1) f(x)dx 
~ 

f ( t k ) + R ( f )

subject to the following cons traint s,

all t are real , t > t > . . .  > tk 1 — 2 —  — n ’

(1. 2) t
+ l k  + tk = 0, k = 1, 2 , . .  . , n (symmetry) ,

R n (f) 0 for every polynomial f of degree p 2 [n/2 ] - 1

If 1 < n < 7 , or n 9, the classical Chebyshev quadratures satisfy all

these conditions , the last one in the strengthened form with p 2[n/2 ] + 1

Other Chebyshev-type formulas , satisfying (1. 2) , exist only for n = 8, 10,

II , and 13. This is shown in [6] and [1], where formulas are derived that

are “ optImal” in the sense of minimizin g

(1. 3) p( t 1, t2, . . . , t )  = I R ( x ~~
1) I , p 2[n/fl - 1 ,

Sponsored by the United States Army under Contract No. DAA GZ9-75-C -
0024 , the National Science Foundation under grant MCS 76-00842 and the
Italian Research Council.
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subject to ( 1. 2). Each of these formulas has one pair of symmetric double

nodes , or one double node at the origin , which (reg retfully) means loss of

the equal coefficient property. We will show here that these same formulas

are I n  fact optimal in the much wid er sense of minimizing

(1.4)  p . (t 1, t 2, . . ., t )  = I R ( x i) I for each i > p + 1

subject to ( 1. 2). (Fo r odd integers 1, the statement is trivially true ,

since 0 by virtue of symmetry. ) In particular, they are minimum norm

quadratures in the Hardy space H 2 of functIons 1(z) analytIc in Iz I < r

r >  1, and square-integrable on I z I = r, since these quadratures minimize

r [B (x )J (see , e .g .,  [2]).
j = p +1

As a preliminary step toward these result s, we first show that for

each n = 8, 10, 11, 13, the set of all Chebyshev-type quadrature formulas

(1. 1), satisfyIng (1. 2), forms a one -parameter family, with parameter a in

some finite closed interval X. < a  < 
~ 

. By using symbolic Sturm sequences ,

we are able to Identify X and ~i. as roots of certain algebraic equations.

The quadrature formulas corresponding to X < a  < i-i. all have n distinct

(simple) nodes in the interval (-1, 1), while those corresponding to a =

or a = have a pair of symmetric double nodes , or a double node at the

origin. The main result then follows fro m a (possibly new) monotonicity

property satisfied by the power sums of the zeros of a polynomial, in par-

ticular , it transpire s that the optimal formulas [in the general sense of

minimizing (1. 4)] always occur at a = . They are necessarily identical

with the optimal formulas found in [61 and [lJ.

-2-
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2 . One-par ameter  famil ies  of Chebyshev-type quadratures.  We

associate with (1. 1) the polynomial

n-rr n n - I
~(x) = I I  (x

~
tk ) = x + a 1x + ... + a

k = l

Fro m Newton ’s identities It follows that the (real ordered) nodes tk will

sat isfy  (1. 2) if and only if

n-2  2
I X + a2 x + ... + a~~ 2x + a (n even)

(2 .1)

F 

+ a2x
n _ Z  

+ ... + a 3x 3 
+ ax (n odd)

where a is some real par ameter and the coefficients a2, a4 , . . 
~

(p = 2 [n/2 } - 1) are given uniquely by

s2 + 2a 2 = 0

s4 + a2 s2 + 48
4 

= 0

+ a2 s 3 + ... + a 3s2 + (P_ l)a ~ ~ 
= 0

where

s2~ = 
~ 

f t2
~ dt = 

~~~~~~~~ 
J = 1, 2 , . . . , (p-l)/2

It remains to determine the conditions on a under which the polynomial ~

in (2. 1) has only real zeros. Letting

( * 2g (x ) (n even) ,

* 2 (n odd)

-3— 
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we are seeking the cond itions on a under which the polynomial

* v i(2. 3) ~ (x) = x + a2
X 

- 

+ ... + a~ 2x + a , v = [n/fl

has only nonnegative zeros. While the problem could easily be discussed

in geo metric terms , we prefer to take an algebraic approach via Sturm

seq uences. Among other thing s, this allows us to identify the l imits  on

the para meter a as roots of certain algebraic equations with integer co-

eff ic ients .

We recall that the Sturm sequence of a polynomial p
0 of deg ree v is

the result of app lying Euclid ’ s algorithm to p0 and p1 p~ , where p~ is

the derivative of p
0 . Thus ,

p0 = q 1
p

1 - p 2

~1 = q 2 p2 - p 3 ,

(2.4)

~ T-2 
= ~~~1P~~1 

-

~~~~~~~~~~

where ~r < v, and each p ,  2 <~~ < T~ is the negative remainder of the

division of p 2 by p 1 . Sturm ’s theorem (see , e. g. , [3 , p. 448])

then assert s that for any a < b , if p0
(a) p0(b) � 0, the number of distinct

zeros of p0 in [a,b] is equal to v(a) - v(b), where v(x), for fixed x

is the number of sign changes in the numerical sequence p0 (x), p1(x) , ...,

p,~(x) . Moreover, if x0 
is a (real or complex) zero of p0, then its

multiplicity is m if and only if x
0 

is a zero of the terminal polynomial

-4- 
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of mul t ip l ic i ty  m - 1 . In par t icular , all zeros of p0 in [a , bJ are

si mp le if and only if p has no zeros in [a , b]

In wishing to apply this  to the polynomial p0 = in (2. 3), one has

to be prepa red to operate on polynomials whose coefficients depend rationally

on the pa rameter a’ . This is best done with the help of symbolic formula

manipulation systems. We indeed generated the Sturm sequences symbolic-

ally , us ing the MACSYMA system available to one of us at Stanford

Universi ty,  and repeating the computations with the SAC-l system on the

UNIVAC 1110 computer at the U niversity of Wisconsin. The results of both

computations were identical , and are summarized below.

Writi ng

V - K  V - K - 1p ( x ) = c  x + c  1 X + . . .  + c  ,K K K K , K+1 K y

the coefficients c
~~ , K<  X~ are polynomials or rational functions of a

with rational coefficient s, the degrees of which are as indicated in the

schedules below. Zero degree always represents a non-vanishing (rational)

constant ; slashes separate numerator degree from denominator degree in case

of rational fu nctions. In all rational functions on the diagonal , the denomi-

nator polynomial is the square of the numerator polynomial in the rational

n=8 ( v=4) n=l0 , 11 (v= 5)  n= 13 (v=6)

0 0 0 0 1  0 0 0 0 0 1  0 0 0 0 0 0 1
0 0 0 0  0 0 0 0 0  0 0 0 0 0 0

0 0 1  0 0 0 1  0 0 0 0 1
1 1  0 1 1  0 0 1 1
3/2 2 2 1 1 1

4/4 3/2 3/2
7/6
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fu nc t i  : r c ~H in q  it on the diago nal. The numerator  polynomials  In t h r ~ term-

i n ~ l “ r t r i -s are irr e ’~uc ible over the field of ra t ionals , except in the r 2 ; ise ‘ f

n = i i , where the numerator  polynomial of c66 factors  into the square  of ~

l i n e a r  polynomial  and a polynomial  of degree five .

According to Sturm ’ s theorem , the polynomial ~ has  v d i s t inc t

positive zeros (necessarily all simple) If and only if v(0) = v and v(~~ ) 0,

that  is , if and only if

(2 . 5) c > 0  and ( _ l ) V _ K
c~~ > 0  for K =  0, l , 2 , . . . , v .

By examinin g the explicit form of these (polynomial) inequal it ies for the

fou r values of r under study, one find s that (2 . 5) is eq uivalent to

( 2 . 6 )  X < a ’ <~ i.

where 
~‘n and are either zero, or equal to one of the zeros

(n) ( n) (n) . . -a < a  < a ’  < . . .  of c (a), as indicated in Table 2. 1. Numerical
1 2 3 ‘iv

Xn n

8 0 
8)

10 a~~0~ 0

(11) (11)11 a2 a 3

( 13) ( 13)
13 a2 a 3

Table 2. 1. Parameter intervals for symmetric
Chebyshev-type formulas of next -to-highest
degree

-6-  
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va lues  of x , , and the numera tor  polynomial  of c in exact

in t ~- q c r  form (of which a~~~, a~~~ a re zeros) are shown below .

By verifying that  v( 1) = v ( o )  = 0 for a in the interval (2 . 6) , one

*f inds  tha t  all ii zeros of ~ a re in fact strictly between 0 and 1

n =  8

= 107 66 1642834 37 5a’3 
- 17 39295676 125a 2 

+ 1639058085a’ + 1698929

= 0

= 1.69631522630102201 9273508 X

n = 10

c~ 5(a ) = 103836 10l67954 1153l25 a 4 
- 69997293705 1972500a 3

- 1183794 10645986a 2 
+ 59483935980a + 10026277

= -1. 70502634454 1702458795446 x io~~

~ l0 = 0

n = 11

c~
1
5(a) = 4355201766189061767 168000000000000000a 4

- 137486584 84054726 502 64 57600 00000000 a 3

-325 17 9089998374326256 2 67264 O 00 OO~
2

-178 19369567349884423809920000a - 227 1280061895695934118607

= -7. 231729443377509440273227 )(

~1l 
= -1. 843814365405786592 111158 X10 4

t For n 13, only the factor (of degree 5) of c
N 

is shown which is
rele van t.

-7-
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n = 13

c~ 6 (o) = -51 19 131238 2 380064 19001 030897 9 82  132062886 29760O00000000000 0o ~
÷ 17 2 040 3029447 37 177 389 37 992 5 5989085 36 177295 360000000000 000 1

-90~ 86 6427 105482 16876719 8718813676 9 19 l568998400 00 0000~~

+ 180292858096 195~ 1776960292383 18998369583l04000000e
2

-15569598 74 919 56246 84 549602 9654 386927 806054400o

+49094135596835984770993643 505846928 157 57

~13 
= 1.024 2 60940 958 103474 931 67 1 X

~ 13 
= 1. 325 9792845853337155 90 553  X

The Sturm sequence terminates  prematurely [1. e. , ~~ < v in (2. ~)I

if and only if a is a zero of one of the diagonal entries c . We ex-
KK

a mined the Sturm sequence in each one of these cases and found , as ex-

pected , that has the desi red number of nonnegative zeros precisely

when a is a nonzero endpoint of the parameter intervals in Table 2. 1.

In each case , ~~~~~ has one double zero and v - 2 simple zeros In the

open interval (0 , 1)

The remaining endpoint a = 0 in the cases n = 8 and n = 10 can

be handled by forming the Sturm sequences at x E > 0 suf f i c ien t ly  smal l ,

*and at x = 1 . One finds v - 1 simple zeros of ~, in (0 , 1). which

together with the zero at x = 0 again yields the desired numb ur  of zero s

in [0,1).

We may summarize our f indings in terms of the polynomial E in

(2. 1) as follows: If n = 8, 10, 11, or 13, the poly nomial ~ has n real

-8- 
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( s y m m e t r i c )  z~’ r s ,  coun t ing  mult i p l i c i t i e s ,  exact ly  if  ~ is in the in te rva l

“ n < a’ . If is an i n t e r i o r  point of tha t  in terval , all z eros of ~ tire

in  fac t  s imple  and contained in the open in te rva l  ( - 1 , 1). If a’ i s  ~j f lO of

the e n ~~point s of [k , ~~], then ~ has  a pair of ( symmetr ic )  double zeros

in (-1 , 1), If a’ ~ 0 , and a double zero at the or igin ,  if a’ 0 , all othe r

zeros  being simple and located in (- 1, 1)

The intervals  [~~ , ~. ]  found here are in agreement  with the (less

accura te )  in terva ls  given in [4 , Table I] for n = 8, 10, and 11. Our results

for n =8 and n = 10 contradict a theorem of Pecka [5], which indeed is

fa l se  because of - om p u t a t i o n a l  errors in the proof.

3. Optimal Chebyshev-type formulas .  In each one-parameter

fami ly  of Chebyshev-type quadratures , obtained in Section 2 , we now wish

to single out one that  minimizes  the objective function p
1 

in (1.4).  We

may assume i = 2J , with j > v , where v = [n/2 } . Letting t *(a )  de-

note the zeros of ~~~, and

s (a) =~~~~~[t (a ’) ]~ , j = 0,1,2, . ..

their power sums , and assuming 
~

. < a < ~-t , the object ive functi on is

easily found to be

(3.1) P (a’) = ~~Is~ (a) - 2(2j +1) I, i ~ 
V

We thus wish to minimize P2j (a’) on the 
interval ~ ~L 

~ ri The

lemmas which follow will lead us to the solution of this problem.

-9-
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L~.- m n ~~ 3. 1. :~up pos e  the a lgebra ic  equa t ion

in r n - i
: x ~ C X • . . c X C = 01 r n - i  m

wi t h ~~-oi coe f f i c ien t s  c , has  in d i s t i n c t  n onnega t ive  root s x x (cI-i .— k k l
C , C ) ,  k 1, 2 , . . . ,  m . Lct S . denote their  j - t h  power sum,

s .(c 1, C
2

, .  . 
~

C
m

) = V [x k (c l, C 2 , .  . . , c ) ] ~, j = 0, 1, 2 

Then

(3 . 2)  -~~---~_ < o  ii ~~~~~ and -~j_
3 = o  ~ i~ z~ j .

Proof. Since , by Newton s ident i t ies , s~ depend s only on

c~, C
2

, . . . c~ the second half  of (3. 2) Is self-evident.  It suff ices ,

therefore , to consider j > ~~, 1 < p. < m

Different ia t ing  the identi ty ~ (x~ (c 1, C
2

, . . . , c ) )  0 with respect to

c , one fi nds
p.

a rn-p . rn -p .xk X
k 

- 

X
k

~~~~~ g ’(x ~ ) - 

if (~~~ - x )

he nce

m-p .+j  -lrn 8x m x
(3  3) —i— = j ‘

~
‘ 

X
) j

~ = -i ~~~ k
ac —~ k ac

p. k = 1 p. k = l  (x -x )

The sum on the far right is precisely the ( m - l ) - s t  divided d i f ference

[x1, x2, . . . x ] f  of the fun ction f(x ) = ~~~~~~ -l Since

-10- 
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[x 1, x , , . .  . , X~~]f f (m
~~~(~~)/ (~~~l) !  ( m~~~ 1 1 ) ~~~~~~, where ~ is in the

open interval spa nned by x 1, x2, . . X~~~, and since all Xk > 0, it follows

th at ~ > 0 , and the sum in questio n is positive. This proves the lemma.

We remark that the proof of Lemma 3. 1 also yield s > 0 if j < 0
p.

if we as sume  all X
k 

> 0, but we will not need this fact in what follows.

Lemma 3. 2. If n = 8, 10, 11, or 13, we have

* n
( 3 . 4 )  s~ ( X e) < 2 (2j +l) .~2! i .~~~ v

Proof. Since the quadrature formula (1. 1) has polynomial degree of

exactness  p Z v - l , it Is certainly exact for f(x) = x2
~~

2
, which yields

* n
(3. 5) s =v - i  2 (2v - l )

For any j > v , we have

s~ (a)  
K l  

[t *(a) ]  +l [t *(a ) 1
V
~

l <[t~ (a) J ~~~~ ~~~i’ ~n < 
~ 

<

where t~~(a) is the largest among the root s t*(a) . The lemma will hold

for any value of j for which

[t ()~. )]
i _ v +l ~~1 n v- i  2 (2 J +l )

By virtue of (3. 5), this is equivalent to

1
* Zv - l  J -v + l(3. 6) t 1 ( k )  < 

~~~~~~ 
)

—11—
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An ele mentary computation shows that  the r i gh t -hand  expression in

(3. 6) is an Increa sing function of j for j > v . By consult ing the numerical

values of t 1
( X )  in [1], and noting tha t  t 1

( X )  = 1t1(X~)12, it is pos sible

t o verify the validity of (3. 6) for j = v+2 when n = 8, for J = v + 3  when

n = 10 , for j = y + 4  when n = 11, and for j = v+ S when n = 13 . The

inequ ality therefore hold s for these and all larger values of j . For the

few re maining values of j ,  one can verify (3 . 4 )  directly , from the data

available in [1]. This completes the proof of Lemma 3. 2.

The problem of minimizing 41
(a’) in (3. l) is now easily solved .

Theorem 3. 1. If n = 8, 10, 11, or 13, the n for each j > v

( 3 . 7 )  p
21

( X )  < p
1

(a) for X < a  < p . .

*
Proof. Applying Lemma 3. 1 to the polyncniial ~, in (2. 3), the

zeros of which are t*( a), we fi nd that each s1
” (a ’), j > v , is st rictly

decr easing on < a < p.o, he nce

(3. 8) s~ (a )  < S;~(x n ) for 
~

. < a

Combining (3. 8) with Lemma 3.2 gives

* n
S

1 (a ’) < 2(2 J 41)~ x < a < p .n

for each J > v . Since s~ (a) decreases on K < a’ < p . ,  It follows that

is an increasing function of a, hence ( 3 . 7 ) .

Corollary . !~~ 
(w

1
) be any sequence of weights w

1 
> 0, with

w
1 

> 0 for some J > v , satisfying

-12- 
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(3. 9) ~~~ i
_ 2

w < ~~

and let

(3. 10) p * ( a ’ )  = ~ w
1
[p

1
(a ) ] 2 , x n~~ a ’ <

j = v

Then

(3. 11) P *( X n) < p
*

(
~~

) ,!9! >~n < a’ < p.

* * I *Proof. Since s~ ( a )  < v[t 1 (a) ] , where t 1 (a) is the largest among

* *the roots t (a) , and since t1 (a) < 1 for K < a < p . ,  the seq uence

* * -l
S

1 
( a )  tends to zero at least geometrically , and consequently p 21

(a ) j

as j -. 
~ 

. The infinite series in (3. 10), the ref ore , converges by virtue

of (3. 9), and (3. Il) is an immediate consequence of (3. 7).

-1 3—
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A well-known result of S. N. Bernstein states that a Chebyshev quadrature
formula of the form 

~ f(x)dx = 
~~ 

f(t~ ) + R (f) , tk real
k= 1

can have algebraic degree of exactness p = n only if 1 <n <7 or n = 9 . The
nodes t are necessarily symmetric with respect to the origin, so that in fact
p = 2 [n/ ]~~ + 1 . If symmetry of the nodes is imposed, it is known from work of
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Ga utsch i  and Yanagiwara and others that next- to -highest  algebraic

degree p 2{n/2] - 1, beyond the classical cases above, can be

attained only when n = 8, 10, 11, and 13. For these values of n ,

“ optimal” formulas have been obtained which minimize jR (x~~~)I

among all symmetric Chebyshev quadratures of degree p = 2[n/2 ] - 1

We show here that these same formulas in fact minimize I R(x i
) I

for each i > p + l .
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